翻訳と辞書
Words near each other
・ Bergville, Minnesota
・ Bergvliet
・ Bergvliet High School
・ Bergvliet Primary School
・ Bergweg
・ Bergweiler
・ Bergwind (film)
・ Bergwinkel
・ Bergy Bridge Historic District
・ Bergylt
・ Bergzabern Palace
・ Bergère
・ Bergère hat
・ Bergères
・ Bergères-lès-Vertus
Bergman space
・ Bergman Week
・ Bergman's bear
・ Bergman, Arkansas
・ Bergman, California
・ Bergman, Edmonton
・ Bergmania
・ Bergmann
・ Bergmann (disambiguation)
・ Bergmann 1896
・ Bergmann Battalion
・ Bergmann degradation
・ Bergmann gliosis
・ Bergmann Hotel
・ Bergmann Mars


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Bergman space : ウィキペディア英語版
Bergman space
In complex analysis, functional analysis and operator theory, a Bergman space is a function space of holomorphic functions in a domain ''D'' of the complex plane that are sufficiently well-behaved at the boundary that they are absolutely integrable. Specifically, for , the Bergman space is the space of all holomorphic functions f in ''D'' for which the p-norm is finite:
:\|f\|_ := \left(\int_D |f(x+iy)|^p\,dx\,dy\right)^ < \infty.
The quantity \|f\|_ is called the ''norm'' of the function ; it is a true norm if p \geq 1. Thus is the subspace of holomorphic functions that are in the space L''p''(''D''). The Bergman spaces are Banach spaces, which is a consequence of the estimate, valid on compact subsets ''K'' of ''D'':
Thus convergence of a sequence of holomorphic functions in implies also compact convergence, and so the limit function is also holomorphic.
If , then is a reproducing kernel Hilbert space, whose kernel is given by the Bergman kernel.
==Special cases and generalisations==

If the domain is bounded, then the norm is often given by
:\|f\|_ := \left(\int_D |f(z)|^p\,dA\right)^ \; \; \; \; \; (f \in A^p(D)),
where A is a normalised Lebesgue measure of the complex plane, i.e. The Bergman space is usually defined on the open unit disk \mathbb of the complex plane, in which case A^p(\mathbb):=A^p. In the Hilbert space case, given f(z)= \sum_^\infty a_n z^n \in A^2, we have
:\|f\|^2_ := \frac \int_\mathbb |f(z)|^2 \, dz = \sum_^\infty \frac,
that is, is isometrically isomorphic to the weighted ''ℓp(1/(n+1))'' space.〔 In particular the polynomials are dense in . Similarly, if , the right (or the upper) complex half-plane, then
:\|F\|^2_ := \frac \int_ |F(z)|^2 \, dz = \int_0^\infty |f(t)|^2\frac,
where F(z)= \int_0^\infty f(t)e^ \, dt, that is, is isometrically isomorphic to the weighted ''Lp1/t (0,∞)'' space (via the Laplace transform).〔〔
The weighted Bergman space is defined in an analogous way,〔 i.e.
:\|f\|_ := \left( \int_D |f(x+iy)|^2 \, w(x+iy) \, dx \, dy \right)^,
provided that is chosen in such way, that A^p_w(D) is a Banach space (or a Hilbert space, if ). In case where D= \mathbb, by a weighted Bergman space A^p_\alpha〔 we mean the space of all analytic functions such that
: \|f\|_ := \left( \frac\int_\mathbb |f(z)|^p \, (1-|z|^p)^\alpha dz \right)^ < \infty,
and similarly on the right half-plane (i.e. A^p_\alpha(\mathbb_+)) we have〔
: \|f\|_ := \left( \frac\int_ |f(x+iy)|^p x^\alpha \, dx \, dy \right)^,
and this space is isometrically isomorphic, via the Laplace transform, to the space L^2(\mathbb_+, \, d\mu_\alpha),〔〔 where
:d\mu_\alpha := \frac_+}, that is
:A^p_\nu := \left\ \; \text \; : \; \|f\|_ := \left( \sup_ \int_} |f(z+\epsilon)|^p \, d\nu(z) \right)^ < \infty \right\}.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Bergman space」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.